Retinal Optical Coherence Tomography (OCT)
The most valuable advance in retinal diagnostic imaging

Optical Coherence Tomography (OCT) is the most valuable advance in retinal diagnostic imaging since the introduction of fluorescein angiography in 1959. OCT is a non-invasive imaging technique relying on low coherence interferometry to generate in vivo, cross-sectional imagery of ocular tissues. Originally developed in 1991 as a tool for imaging the retina, OCT technology has continually evolved and expanded within ophthalmology as well as other medical specialties. Specialized anterior segment OCT machines became available in 2005 and the introduction of Spectral (Fourier) Domain OCT (SD-OCT, FD-OCT) technology now provides greater tissue resolving power, significantly higher scan density, and faster data acquisition than original Time Domain OCT.

Clinical Uses

Cross-sectional visualization is an extremely powerful tool in the identification and assessment of retina abnormalities. The high resolving power (10um – Time Domain, 5um – Spectral Domain) provides excellent detail for evaluating the vitreo-retinal interface, neurosensory retinal morphology, and the RPE-choroid complex. The ability to perform volumetric and retinal thickness analysis also provides a quantitative and repeatable method to evaluate surgical and pharmacological interventions.

OCT showing sub retinal fluid

 

Individual high resolution line scans are a simple way to identify overt as well as very subtle retinal interface pathologies, such as a persistently adherent posterior hyaloid, fine epiretinal membranes, and vitreomacular traction. In a procedure that is easily tolerated by most patients, well-placed line scans can differentiate between pseudo holes, lamellar holes and full thickness macular holes with a high degree of confidence. Line scans can also confirm the presence of retinal edema from various causes. When combined with serial thickness map or volume analysis, these different data sets provide a detailed picture of disease progression or therapeutic response.

OCT is also quite useful in the assessment of subretinal fluid, neurosensory detachments, pigment-epithelial detachments, and choroidal neovascular membranes. OCT confirmation of persistent subretinal fluid can influence the treatment plan when considering intravitreal injection therapy. RPE irregularities associated with both wet and dry AMD can be monitored using line scans. With experience, OCT imaging may allow differentiation between wet and dry AMD eliminating the need for more invasive testing such as fundus photography and fluorescein angiography; while in other cases OCT is a valuable adjunct to these modalities. Utilization of OCT imaging as a pre and post surgical assessment tool can provide invaluable information in the surgical management of macular holes and retinal detachments. OCT can provide visualization of surgical outcomes, confirming reattachment and normal contour. Immediate post-surgical imaging can sometimes be challenging due to ocular turbidity that can result in significantly reduced OCT signal strength; but images adequate for subjective, if not quantitative, interpretation can usually be obtained. Pre-surgical scanning, especially in cases of poor ocular media, can often reveal pathologies that could complicate surgery, such as the presence of undetected macular hole, CNV, edema or VMT. The OCT’s scanning beam technology allows successful imaging even through a small pupil or tiny peripheral opening in a dense cataract that would otherwise confound thorough ophthalmoscopic examination.

OCT showing drusen bodies of AMD

 

Technique

Optical Coherence Tomography generates cross sectional images by analyzing the time delay and magnitude change of low coherence light as it is backscattered by ocular tissues. An infrared scanning beam is split into a sample arm (directed toward the subject) and a reference arm (directed toward a mirror). As the sample beam returns to the instrument it is correlated with the reference arm in order to determine distance and signal change via photodetector measurement. The resulting change in signal amplitude allows tissue differentiation by analysis of the reflective properties, which are matched to a false color scale. As the scanning beam moves across tissue, the sequential longitudinal signals, or A-scans, can be reassembled into a transverse scan yielding cross-sectional images, or B-scans, of the subject. The scans can then be analyzed in a variety of ways providing both empirical measurements (e.g. RNFL or retinal thickness/volume) and qualitative morphological information.

While OCT imaging provides a unique perspective for evaluating any number of retinal conditions, clinicians should be aware that scans and analysis are not without fault. Poor ocular media, patient compliance and even saccadic movement can introduce image artifacts that can masquerade as pathology. Even more problematic are the occasional software algorithm failures or the inappropriate application of certain analysis algorithms by undertrained operators. Certain image artifacts and analysis errors can be identified by characteristic patterns; however there are instances when it may be necessary to review the raw scan data to determine the nature of inconsistent results.

Spectral (Fourier) Domain OCT

Spectral or Fourier Domain OCT (SD-OCT) is the newest technological variant of this evolving modality. SD-OCT provides nearly a 100 fold increase in the amount of data captured as well as a significant increase in axial resolving power. In comparison, time domain functions at a rate of 400 A-scans per second, while SD instruments can perform tens of thousands of A-scans per second. This dramatic increase in scanning speed allows for greater data acquisition with lower likelihood of motion artifacts and a much finer raster pattern of B-scans. SD axial resolution currently ranges from 3-7 microns, an improvement over the 8-10 microns of time domain OCT. Transverse resolving power is a function of both instrument and ocular optics, and therefore has not improved with this generation of OCTs. Ongoing research using adaptive optics to correct existing optical aberrations in OCT has demonstrated the potential for lateral resolution to the cellular level.

Cross-sectional visualization of retinal pathology is improved with SD-OCT. “High” resolution B-scans are comprised of 4,096 A-scans, compared to time domain’s maximum of 512 A-scans. With this level of detail, the photoreceptors, RPE, and choriocapillaris can be distinguished as distinct layers. Subtle disruptions within various retinal layers can be pinpointed and it is now possible to recognize lesions which were well beyond the resolution limit of traditional OCT. In cases of severe morphological remodeling, SD-OCT provides a view that allows greater certainty in confirming a suspected etiology. The increased signal “sensitivity” also allows a cleaner view of vitreous body and interface echoes.

Rapid scan acquisition further increases the diagnostic accuracy of SD-OCT by eliminating the use of alignment algorithms to correct patient movement in “lengthy” TD scans. This speed has facilitated scanning patterns which can cover up to a 6mm x 6mm area of retina with B-scans spaced so tightly that the data can be presented as a three-dimensional cube. Cubed data can be rotated, flipped, and viewed from any perspective. These dense scan patterns now also provide continuous C-scan information. Time domain OCT volumetric maps attempt to generate this z-plane tomographical information, but the speed-limited scan patterns necessitate extensive extrapolation of data for areas of retina that falls between B-scans. Another benefit of the dense raster patterns of SD-OCT is consistent lesion comparison over time. Tightly spaced B-scans insure that all but the smallest of lesions are imaged, so location and size can be accurately followed over time.

Three-dimensional visualizations are some of the most significant advances in this generation of OCT evolution. Once cube data has been obtained, it can be rendered in a number of ways. Sophisticated algorithms have been created to identify the major layers of the retina based on interface echo characteristics so that various segments of the retina can be “peeled” away allowing for z-plane viewing for more than just the ILM surface. Manual controls can also be utilized to rotate the cube and pull back any number of individual or combined X and Y scans so that morphology can be examined in the exact context of the retinal 3D matrix.

While the fundamental principle and application of SD-OCT remains the same as traditional Time Domain OCT, it remains uncertain whether this increased level of morphological information will provide greater understanding of the relationship between retinal disease processes and their physiological implications.

SD-OCT relies on three technical modifications to generate increased resolution and high acquisition rates. By utilizing super-luminescent diode (SLD) technology that was not available in the 1990’s, SD-OCT utilizes a wider bandwidth light source than TD-OCT, which allows increased axial resolving power. Pulsed-light femtosecond lasers, with even wider bandwidth, can achieve 1-2 micron resolution; however their current cost is prohibitive, which limits them to use to dedicated research instruments.

The primary speed gating factor for TD imaging was the use of a movable mirror in the reference arm scanning path. By eliminating this mechanical limitation and including a spectrometer with a diffraction grating in place of the traditional photodetector, SD-OCT is no longer time-bound. This modification combined with the application of a Fourier transform applied to the reference/sample interferogram allows for the huge increase in scanning and analysis speed. It should be noted however, that faster A-scan rates can lead to some loss of image quality which can be somewhat ameliorated using over-sampling techniques.

In 2017, The Avanti OCTA Advantage

Kelly Doing the Avanti OCTA

 

Avanti

 New Views of the Retina

Avanti Widefield OCT gives you new information on structures outside the traditional 6×6 mm cube, separates the retina into distinct layers for detailed assessment, offers views of the vitreous and deep choroid, and gives you the ability to monitor change over time. With the extensive information delivered by the Avanti System, you can tailor your approach to treatment and truly personalize patient care.

OCTA area

Extensive Nerve Fiber Layer Analysis

Take your analysis of the nerve fiber layer to the next level with Avanti’s trend analysis software, which tracks change in RNFL and GCC thickness and provides an estimate of future progression. This comprehensive analysis allows you to personalize treatment protocols and enhance your patients’ understanding of their disease. New metrics, Focal Loss Volume (FLV%) and Global Loss Volume (GLV%), increase the sensitivity and specificity of the GCC analysis to help you identify suspected optic nerve head disease.

optovue_avanti_p2_FastProgressingPatient

Cornea Advance: Intelligent OCT Imaging for the Anterior Segment

Expand the clinical utility of your OCT to address a broad range of patients in your practice. With Avanti’s Cornea Advance, you can visualize and measure corneal angles, quantify corneal thickness and track change in thickness between visits. Avanti’s Total Cornea Power software allows you to precisely calculate IOL powers in post-refractive surgery patients to optimize their visual outcomes and truly personalize their care.

optovue_avanti_p3_TCP_NoCaptions_v2

The Transformative Power of OCT Angiography

Introducing AngioVueHD

AngioVueHD produces high-density scans with 73% more sampling points* to give you a 6x6mm scan with outstanding resolution. Now you can confidently evaluate fine vessels extending beyond the central 3x3mm region of the macula. Automatic montage (shown at right) expands the field of view even further by instantly combining macula and optic disc images for a 10x6mm widefield view.

angiovue-hd_oct-angiography-montage-scan-image

3D Visualization of Retinal Vessels

AngioVue lets you see the retinal vessels in a whole new way. Three-dimensional images are separated into individual layers of retinal vasculature to show you an unprecedented level of detail and isolate areas of interest.

optovue_angiovue_p2_Optovue_CNV_Color-Layers2_v2

AngioVue Retina: OCTA Designed for the Retina Specialist

The AngioVue system is available in two configurations to meet the specific needs of your practice. AngioVue Retina is optimized for the retina practice and combines functional OCTA with the structural OCT scans the retina practice demands. The comprehensive AngioVue system includes OCTA capabilities and structural OCT for retina, optic nerve and anterior segment applications.

 

From: http://www.opsweb.org/?page=RetinalOCT

Optovue’s RTVUE on Good Morning America in 2007

How is the testing done?

How Did OCT Start?